Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Hong Ma,* Pi-Zhuang Ma, Huan-Qin Zhu and Chang-Cheng Liu

Department of Materials and Oil, PLA Xu Zhou Air Force College, Xuzhou 221000, Jiangsu Province, People's Republic of China

Correspondence e-mail:
mayuhong2010@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=300 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.070$
Data-to-parameter ratio $=11.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diaquabis(dicyanamido)bis[4-(2-pyridyl)-4H-1,2,4-triazole- κN^{1}]cobalt(II)

The title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ or $\left[\mathrm{Co}(\mathrm{dca})_{2}(\text { pytrz })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, where pytrz is 4-(2-pyridyl)-4H-1,2,4-triazole and dca is the dicyanamide monoanion, was prepared using pytrz, $\mathrm{Na}(\mathrm{dca})$ and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The $\mathrm{Co}^{\text {II }}$ atom lies on a center of inversion and is coordinated in a slightly distorted octahderal geometry by two pytrz ligands, two dca ligands and two trans-oriented water molecules. In the crystal structure, complex molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into a two-dimensional network and further into a three-dimensional network via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Transition metal complexes using 1,2,4-triazole derivatives as ligands are of great interest as many compounds based on these ligands have shown intriguing structures with interesting properties (Kahn \& Martinez, 1998). In addition, supramolecular polymer chemistry is a branch of modern science that is developing rapidly (Lehn, 1995, 1999; Ouahab, 1997). In our current research, relating to these topics, we have synthesized the title compound, (I), and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are listed in Table 1. The $\mathrm{Co}^{\mathrm{II}}$ atom lies on a center of inversion and is coordinated in a slightly distorted octahedral environment through two N atoms from two pytrz ligands and two N atoms from two dca ligands in the equatorial plane, and two aqua ligands [pytrz is 4-(2-pyridyl)-4H-1,2,4-triazole and dca is the dicyanamide monoanion]. The dihedral angle between the pyridine and triazole rings is $4.77(4)^{\circ}$. In the crystal structure, the coordinated water molecules act as hydrogen-bond donors to N atoms of both the dea ligands and the triazole groups of pytrz ligands to give intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds,

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Atoms labeled with the suffix A are related by the symmetry operator $(1-x, 2-y,-z)$. H atoms have been omitted.

Figure 2
A two-dimensional hydrogen-bonded layer of (I). Dashed lines indicate the non-bonded contacts between N and O atoms involved in hydrogen bonds. H atoms have been omitted.
which assemble the title complex into two-dimensional layers (Fig. 2). Furthermore, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link these layers into a three-dimensional network (Table 2).

Experimental

To a solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{ml})$ was added a solution of pytrz $(0.5 \mathrm{mmol})$ in water $(15 \mathrm{ml})$. The mixture was stirred for 30 min and then $\mathrm{Na}(\mathrm{dca})(0.4 \mathrm{mmol})$ was added to the solution. The mixture was then refluxed for 3 h and stirred for 5 h at room temperature. After filtration, the filtrate was allowed to stand at room temperature. After a few weeks, red crystals of the title compound were obtained. Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{CoN}_{14} \mathrm{O}_{2}$: C 41.62, H 3.10, N 37.75%; found: C 41.50 , H 3.12, N 37.57%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=519.38$

$$
Z=1
$$

Triclinic, $P \overline{1}$
$a=5.8684$ (17) £
$b=7.661$ (2) \AA
$c=11.716$ (4) \AA
$\alpha=89.794(5)^{\circ}$
$\beta=88.512(5)^{\circ}$
$\gamma=85.991(5)^{\circ}$

$$
V=525.3(3) \AA^{3}
$$

$D_{x}=1.642 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.87 \mathrm{~mm}^{-1}$
$T=300$ (2) K
Block, red
$0.30 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.812, T_{\text {max }}=0.870$
2180 measured reflections
1830 independent reflections 1693 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.070$
$S=1.06$
1830 reflections
160 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0298 P)^{2} \\
&+0.2298 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 1$	$2.0800(17)$	$\mathrm{Co} 1-\mathrm{O} 1$	$2.1391(14)$
$\mathrm{Co} 1-\mathrm{N} 4$	$2.1245(16)$		
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	180	$\mathrm{~N} 4-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	$90.64(6)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$90.88(6)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1$	$92.45(7)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4^{\mathrm{i}}$	$89.12(6)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{O} 1$	$89.36(6)$
$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 4^{\mathrm{i}}$	180	$\mathrm{O} 1^{i}-\mathrm{Co} 1-\mathrm{O} 1$	180
$\mathrm{~N} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	$87.55(7)$		

Symmetry code: (i) $-x+1,-y+2,-z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.85	2.16	$2.991(2)$	166
O1-H1B $\cdots 5^{\text {iii }}$	0.98	2.06	$3.006(2)$	161
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N}^{\text {iv }}$	0.93	2.51	$3.374(3)$	154
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N}^{\mathrm{v}}$	0.93	2.44	$3.352(3)$	167
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{~N}^{\mathrm{v}}$	0.93	2.48	$3.374(3)$	162

Symmetry codes: (ii) $x, y-1, z$; (iii) $-x,-y+2,-z$; (iv) $-x,-y+2,-z+1$; (v) $x+1, y-1, z$.

H atoms bonded to C atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and were included in a riding-model approximation. The aqua H atoms were located in a difference Fourier map and were refined as riding in their as-found positions. For all H atoms, $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1998); software used to prepare material for publication: SHELXTL-NT.

metal-organic papers

References

Bruker (1998). SMART-NT, SAINT-NT and SHELXTL-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kahn, O. \& Martinez, C. J. (1998). Science, 279, 44-48.

Lehn, J.-M. (1995). Supramolecular Chemistry - Concepts and Perspective. Weinheim: VCH.
Lehn, J.-M. (1999). Chem. Eur. J. 9, 2455-2463.
Ouahab, L. (1997). Chem. Mater. 9, 1909-1926.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). $S A D A B S$. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

